Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 3, 2026
-
Sea ice plays a critical role in the global climate system and maritime operations, making timely and accurate classification essential. However, traditional manual methods are time-consuming, costly, and have inherent biases. Automating sea-ice type classification addresses these challenges by enabling faster, more consistent, and scalable analysis. While both traditional and deep-learning approaches have been explored, deep-learning models offer a promising direction for improving efficiency and consistency in sea-ice classification. However, the absence of a standardized benchmark and comparative study prevents a clear consensus on the best-performing models. To bridge this gap, we introduce IceBench, a comprehensive benchmarking framework for sea-ice type classification. Our key contributions are three-fold: First, we establish the IceBench benchmarking framework, which leverages the existing AI4Arctic Sea Ice Challenge Dataset as a standardized dataset, incorporates a comprehensive set of evaluation metrics, and includes representative models from the entire spectrum of sea-ice type-classification methods categorized in two distinct groups, namely pixel-based classification methods and patch-based classification methods. IceBench is open-source and allows for convenient integration and evaluation of other sea-ice type-classification methods, hence facilitating comparative evaluation of new methods and improving reproducibility in the field. Second, we conduct an in-depth comparative study on representative models to assess their strengths and limitations, providing insights for both practitioners and researchers. Third, we leverage IceBench for systematic experiments addressing key research questions on model transferability across seasons (time) and locations (space), data downsampling, and preprocessing strategies. By identifying the best-performing models under different conditions, IceBench serves as a valuable reference for future research and a robust benchmarking framework for the field.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.more » « less
-
Antarctic sea ice prediction has garnered increasing attention in recent years, particularly in the context of the recent record lows of February 2022 and 2023. As Antarctica becomes a climate change hotspot, as polar tourism booms, and as scientific expeditions continue to explore this remote continent, the capacity to anticipate sea ice conditions weeks to months in advance is in increasing demand. Spurred by recent studies that uncovered physical mechanisms of Antarctic sea ice predictability and by the intriguing large variations of the observed sea ice extent in recent years, the Sea Ice Prediction Network South (SIPN South) project was initiated in 2017, building upon the Arctic Sea Ice Prediction Network. The SIPN South project annually coordinates spring-to-summer predictions of Antarctic sea ice conditions, to allow robust evaluation and intercomparison, and to guide future development in polar prediction systems. In this paper, we present and discuss the initial SIPN South results collected over six summer seasons (December-February 2017-2018 to 2022-2023). We use data from 22 unique contributors spanning five continents that have together delivered more than 3000 individual forecasts of sea ice area and concentration. The SIPN South median forecast of the circumpolar sea ice area captures the sign of the recent negative anomalies, and the verifying observations are systematically included in the 10-90% range of the forecast distribution. These statements also hold at the regional level except in the Ross Sea where the systematic biases and the ensemble spread are the largest. A notable finding is that the group forecast, constructed by aggregating the data provided by each contributor, outperforms most of the individual forecasts, both at the circumpolar and regional levels. This indicates the value of combining predictions to average out model-specific errors. Finally, we find that dynamical model predictions (i.e., based on process-based general circulation models) generally perform worse than statistical model predictions (i.e., data-driven empirical models including machine learning) in representing the regional variability of sea ice concentration in summer. SIPN South is a collaborative community project that is hosted on a shared public repository. The forecast and verification data used in SIPN South are publicly available in near-real time for further use by the polar research community, and eventually, policymakers.more » « less
An official website of the United States government
